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Abstract

The hybrid power flow analysis (PFA) is an analytic method proposed for the effective prediction of vibrational and
acoustic responses of low-damping system in the medium-to-high frequency ranges by using the PFA algorithm and
statistical energy analysis (SEA) coupling concepts. This paper presents the hybrid boundary condition on 3-D case for
hybrid PFA in addition to 1-D and 2-D cases which are derived in the other companion paper, and formulates the hybrid
power flow finite-element method (PFFEM) including coupling loss factor (CLF) of SEA to extend the application area of
hybrid PFA to built-up structures. To verify the derived boundary condition and hybrid PFFEM, numerical analyses were
successfully performed for various analytic models and reverberance factors.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Power flow analysis (PFA) has been developed as a promising tool for predicting vibrational and acoustic
responses of built-up structures in the medium-to-high frequency ranges. However, though PFA has the
advantage over the traditional finite-element analysis (FEA), boundary element analysis (BEA) and the
statistical energy analysis (SEA) in these frequency ranges, the coupling information is somewhat insufficient
due to the recent beginning of research and the application of experimental approach is not very easy due to
theoretical difficulties [1].

On the other hand, since SEA has been developed by many researchers since 1959 and assumptions in the
development of SEA are simplified, SEA has much information especially about the coupling data which are
important in the vibro-acoustic analysis of built-up structures and has some commercialized softwares/
hardwares calculating SEA parameters such as coupling loss factor (CLF), modal density, damping loss
factor, etc. [2]. Therefore, this coupling information can be efficiently used in an alternative method based on
energy.
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In this paper, the general algorithm for the use of CLF in PFA boundary condition on 3-D case was
presented in addition to 1-D and 2-D cases which are derived in the other companion paper [1]. Additionally,
the hybrid power flow finite-element method (PFFEM) using the new joint element matrix including CLF was
formulated to extend the application area of the developed hybrid PFA to built-up structures and was applied
in numerical analyses of built-up structures to evaluate its validity. Finally, using the developed hybrid
PFFEM, numerical applications for a simple automobile-shaped structure were represented.

2. Formulation of hybrid boundary condition in PFA
2.1. Three-dimensional case

To extend the scope of the application of hybrid boundary condition which is described in the other
companion paper [1], acoustic wave in cavities will be considered as 3-D problem. Bouthier found a second-
order energy differential equation for the propagation of acoustic waves in lossy medium [3,4],
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where ¢, , is the group velocity of an acoustic wave in gases, # is the acoustic damping loss factor, w is the
excitation frequency, (e), is the time- and locally space-averaged acoustic energy density and II;, , is the
acoustic power injected by a sound source. The group velocity for acoustic waves is same as the phase speed
and is given by

Cga = Ca = &, (2.2)
Po
where y is the ratio of the specific heats of the gas at constant pressure to the specific heat of the gas at constant
volume, P, is the standard pressure, and p, is the density of various gases.
The time- and locally space-averaged acoustic intensity is related to the time- and locally space-averaged
acoustic energy density by [4]
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Like 1- and 2-D cases which are described in the other companion paper, the reverberance factor i, of
acoustic wave-field in a subsystem can be defined by

N, = lpaLc,aa (24)

where Y, =nw/c,, and L., is the characteristic length of acoustic cavity subsystem.

If the damping loss of acoustic medium like that of the air (O(10™%) is very small (n<1), the excitation
frequency is not very high and the dimension of acoustic cavity is not large, the reverberance factor %, of
acoustic wave-field in the subsystem will be very small. In this case, except for the cavity loaded acoustically,
the assumption that the energy density field in a acoustic cavity is reverberant ({e), = constant) is reasonable.

Fig. 1 shows the power flow model of coupled two acoustic cavities of different acoustic properties with no
partition. If the acoustic wave-field of each cavity shown in Fig. 1 is reverberant, the power per unit area, which
is transferred from the energy of acoustic waves in cavity 1 to cavity 2 using the CLF of SEA, can be expressed as

onpEi.  onpVilen),

Hla»Za = S = S ) (25)

where E, is the total energy, V; is the volume of acoustic cavity 1, #;, is the CLF from cavity 1 to cavity 2, S'is
the area of area junction, and (e), is the energy density of acoustic wave in cavity 1. The CLF for area junction
between two acoustic cavities is known as [2]
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Cavity 1 Cavity 2

Fig. 1. Power flow model of coupled two cavities.
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Fig. 2. Coupled acoustic cavities without partitions.

where ¢, , is the group velocity of acoustic waves in cavity 1, {7 ), is the diffuse power transmission coefficient
from cavity 1 to cavity 2. Using Eqgs. (2.3) and (2.5), the net power of the acoustic wave from cavity 1 to cavity 2
can be represented as

c;la — Cqu — (&
I = _n,wv(e>1“ H= _m—wwe)z“ =Ty — 1) = S (Vinlen)a — Vany(€2)a)s (2.7
where 7 is the normal vector shown in Fig. 1.
In the model shown in Fig. 1, regardless of the reverberance factor, the classical boundary conditions of
power flow solutions for acoustic wave can be expressed as

(@2) iy = 112(q1) iy + 722(02) 1 (2.8)
and
(@) ax = 711001 i + 721(02) (2.9)

where (qi)j’x is the x-component of acoustic intensity in the + x-direction, t and y are the diffuse power
transmission and reflection coefficients of acoustic waves, respectively. The evaluation of diffuse power
transmission and reflection coefficients for coupled acoustic spaces is discussed in Appendix B.

2.1.1. Numerical examples

The numerical applications of hybrid method on 3-D case are performed for ideally coupled three
acoustic cavities shown in Fig. 2. Each cavity has the same dimension of Ly =Ly =L =L, =L. =1m.
The acoustic properties of each cavity are assumed to be p, = 1.3kg/m>, ¢; = 330m/s, p, = 1.35kg/m?,
¢ =340m/s, p; = 1.37kg/m? and ¢3 = 350m/s. Acoustic input power is located at xo = Ly /2, yy = L,/2
and zop=L./2 in cavity 1 and its magnitude is P=10W. The detail procedure of the numerical
analysis on 3-D case is discussed in Appendix A. Figs. 3-6 show 3-D power flow solutions along
the plane z = 0.5 L, when the excitation frequency is f = 5kHz. In the numerical model of Figs. 3 and 4,
the acoustic damping loss factors of all cavities were assumed to be 0.001 and the reverberance
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Acoustic Energy Density along the plane 2=0.5L,

120

115

105

Energy density level (dB, ref 10 "2 um?® )
=
]

100+
00204056
(a)
120

-

£
o
< 1154 e e

o ,;zz’,f,%i,‘fé;ﬂz‘i’

s = L';;'l =
e e
210 = =

] 1 s

2 L gzziiz’:mz;'
2 LT e
2 = 4'”’%,,:"4,5"

2 'z,”';fv';f:"”‘”"

3 e S s s

@1 05

o

[ =4

w

100~
0020406
61, 222904 2628 3 0
(b) x(m)

Fig. 3. Acoustic energy density level along the plane z = 0.5 L. in f = 5kHz, n; = 5, = n; = 0.001: (a) using classical boundary condition
at all area junctions; and (b) using hybrid boundary condition at all area junctions.

factors of acoustic wave-fields in each cavity are i, = 0.1649, RN,, = 0.16 and NR,3 = 0.1555, respectively. In
Figs. 5 and 6, the acoustic damping loss factors of all cavities were assumed to be 0.0001 and the reverberance
factors of acoustic wave-fields in each cavity are %, = 0.0165, R, = 0.016 and N,z = 0.0156, respectively. In
Figs. 36, the sub-figures (a) and (b) of each figure are the power flow solutions using the classical boundary
condition represented in Egs. (2.8) and (2.9), and the hybrid boundary condition represented in Eq. (2.7) in all
area junctions, respectively. The diffuse acoustic power transmission and reflection coefficients used in two
area junctions are evaluated numerically (Appendix B). In the sub-figure (b) of Figs. 3—6, though the hybrid
boundary condition using CLF of SEA is applied at all area junctions, the spatial variations of acoustic energy
densities and intensities appear well. Additionally, because the reverberance factors of acoustic wave-fields in
the numerical model of Fig. 3 are broken down into those as large as in Fig. 5, the energy density level using
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Acoustic Intensity Distribution along the plane z=0.5Lz
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Fig. 4. Acoustic intensity distribution along the plane z=0.5L. in f= 5kHz, n, =#, =n; =0.001:

condition at all area junctions; and (b) using hybrid boundary condition at all area junctions.

(a) using classical boundary
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Fig. 5. Acoustic energy density level along the plane z = 0.5 L. in f = SkHz, n; = n, = n; = 0.0001: (a) using classical boundary condition
at all area junctions; and (b) using hybrid boundary condition at all area junctions.

classical boundary condition is somewhat different from that using hybrid boundary condition in Fig. 3 and
the difference between those is within 2dB. However, the energy density levels using classical and hybrid
boundary conditions show a good agreement in Fig. 5 due to relatively small reverberance factors. For
the in-depth confirmation of the effect of reverberance factor, Fig. 7 shows the relative difference
between space-averaged acoustic energy densities obtained using hybrid boundary condition and classical
boundary condition, divided by the space-averaged energy density using classical boundary condition
(IIE3, classic — 3, nybrid /I E3, classic | ) in cavity 3. Like previous 1- and 2-D cases, as the reverberance factor of
acoustic wave-field in cavity 3 decreases, the power flow solutions using each boundary condition on 3-D case

become nearly equal.
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Acoustic Intensity Distribution along the plane z=0.5Lz
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Fig. 6. Acoustic intensity distribution along the plane z=0.5L. in f=5kHz, 5, =5, =53 = 0.0001: (a) using classical boundary
condition at all area junctions; and (b) using hybrid boundary condition at all area junctions.
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Relative difference of acoustic energy density as
reverberance factor variations (R’a1 = 1.65)
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Fig. 7. Relative difference (HE - EII/HEH) between space-averaged acoustic energy densities of cavity 3, using classical and hybrid
boundary conditions as the reverberance factor variation of cavity 3 in f= SkHz and %, = 1.65.

3. Formulation of hybrid PEFEM

For PFA of built-up structures, the numerical approach such as the finite element and boundary element
techniques is required for obtaining the power flow solution of energy governing equation. Nefske and Sung
implemented a finite element formulation of the energy governing equation and the developed PFFEM was
used to predict the vibrational response of beam structures [5S]. Cho presented the finite element formulations
for 1-D energy equation considering multi-degrees-of-freedom and 2-D energy equation considering
one degree-of-freedom [6]. Seo expanded into the general finite element formulation for the 2-D case [7].
Recently, Seo and Park developed the software for vibration analysis, PFA design system (PFADS), based on
PFFEM [8,9].

In this paper, the hybrid power flow finite element (PFFE) formulation using CLF of SEA was represented
and the hybrid PFFEM on a typical 2-D case was considered. For the hybrid PFFEM using CLF of SEA, the
derivation of new joint element matrix used for linearization of the global matrix equation is required.

For the hybrid PFFE formulation of 2-D energy governing equation, the weak variational form of energy
governing equation for the propagation of “m’-type wave is obtained and the following equation is obtained
by Galerkin weighted residual approximation:

g C?/m 2
Z{/D (77_@ Vo, -V, + nw¢i¢j> dD}ej = /DHm‘ibi dD +/F¢i{(_") (D)} dr, (3.1)

j=1
where ¢, is the group velocity of “m”-type wave, e; is the nodal value of energy density, ¢; is the basis

function for energy density approximation ((e)m = Z;':lejqﬁj), v is a unit vector normal to the domain

boundary I', n is the number of the basis functions and the intensity of ““m”-type wave in the boundary is
(Dym = —c§mVem/r]w.
Eq. (3.1) can be written in element matrix form as [6]

[K©O]{e@} = {FO} 4+ {0}, (3.2)
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where
2
KO = [ (Smyg . v dD
m,ij ¢i d)j + nw¢i¢j
D\ W
FY = /quai dp,
D
0, = [ ad - }ar
and

T
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In Eq. (3.2), the negative sign of Qm, term means the net power flux of the inner-direction of element.
When the element matrix equations of all elements are acquired, global matrix equation has to be assembled
to solve the linear equation. The global matrix equation can be represented as

[K){e} = {F} + {0}

First of all, if the terms on only “m”-type wave are considered, the matrix {Q}, the global power flow
matrix, includes the differential terms of the energy density and can be expanded to

(3.3)

{Qlﬂ} = {"'9 Q(k) Q(kJrl)) '} (34)
where
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Iy Iy
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k41 k+1

where Qﬁfj) and fof*l) are the “m”-type boundary energy flux vectors for two adjacent boundary elements, k
and k+ 1, respectively, lying on the line joint of two elements [6]. The general hybrid boundary condition on
2-D case, which is described in the other companion paper, can be represented as [1]
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| m;{% (Sitium et = St e }] (i=1,....N), (3.8)

> A (Simganteds = Simnsem) }] (i=1,...,N), (3.9)
iLm=f,1,s

”-type power in plate i, {e;),, is “m”-type energy density of plate 7, 1, is
CLF form “m”-type waves in plate i to

“ LX)

-type waves in plate j, S; is the area of plate i, L is the length of line

junction among plates and #; is the normal vector of line junction in plate i.
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Substituting the hybrid boundary condition given in Eqgs. (3.7)—(3.9) into Eq. (3.4), the joint power flow
equations can be expressed as, using CLF of SEA,

k w k k+1
615,4) =P+ (k) — Piky (k+1) = 12 {—S(k)ﬂ(k) (k+1)mme£n) + S(k+l)’7(k+1)(k)mmefn+ )} (3.10)
and
(k+1) _ _Y g * _ g (k1) 3.11
A = Pl e+1) — Plk+1) () = 12 N k) (k1) mmCm” — O Ue+DNke4-1) (kymmCm > (3.11)

where S is the area of the element including boundary element k, L is the total length of line junction and
Nk) (e1)mm 18 the CLF between the “m”-type energies of elements including boundary elements & and k+ 1.
The values of the energy density in the boundary element can be approximated as, using the basis functions
corresponding to boundary nodes,

n
W ="l (3.12)
=1

where e,(,]f} are nodal values of “m”-type energy density of the boundary element k, ¢; are the basis functions,

and the integer, n, is the number of the basis function. Using Egs. (3.10) and (3.11), the global power flow
matrix in Eq. (3.4) can be written by

Nk (et
_S(k)’/’(k) (k+1) mm Zl (el(nj)frgbiqu dr) + S(k+1)n(k+l) (k) mm Zl (el(anr )fl*d)i(bj dr)
J= J=

(k)
w
Qf,;l) =5 " P (3.13)
m S(k)n(k) (k+1) mm Zl (emj §F¢i¢j dr) - S(k+l)’7(k+1)(k)mm Zl (emj frqsid)j dr)
. J= J=

To illustrate the global matrix assembly procedure, the example shown in Fig. 8 is considered. In Fig. 8, the
global nodes are not real finite element nodes. In a common finite element model, the model composed of two
coupled quadrilateral elements is modeled with six-nodes. However, as known, because the discontinuity of
energy density in PFA occurs in the coupled line junction, two virtual nodes have to be added and the numbers
of total nodes renumbered as shown in Fig. 8. In case of the example shown in Fig. 8, Eq. (3.13) can be

1 5 8

4
® @ @ ®

e P

Element 1 Element 2

e<21) egl) e;z) egz)
( o o @
2 3 6 7

Fig. 8. Two four-node quadrilateral elements for power flow finite element method.
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expressed as, with the nodal values of boundary nodes, i.e., 3-6,

1/3 1/67 [ €} 13 1/67 [ €2
Qm3 _Sln12mmll/6 1/3] (1) +S2’721mm 1/6 1/3 6‘(2) €m3
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=— 0 o =[] . (3.14)
Oms [ L 1/3 1/6] [ &l 1/3 1/6] [ 2 €ms
Ons Sthamm | /6 173 o0 (7 SMmm |16 173 [ 62 s

where / is the length of line junction in one element.
Considering full degrees-of-freedom (flexural, longitudinal and shear waves) in a plate, Eq. (3.13) can be
expanded into
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(3.15)

) is the nodal value of * ”-type energy in boundary element k, and 5(+1ym, 18 CLF from “m”-type
“p”-type energy in boundary element £+ 1. Using Eq. (3.15), Eq. (3.14) can

where e(
energy in boundary element k to
be expanded as
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where [m;] and [m,] can be represented as
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with the length of boundary in one element, /. The new joint element Eq. (3.16) can be simply expressed as

Or e
O =1 e, (3.17)
0, es

where [J;] is the new joint element matrix for hybrid PFFEM using CLF of SEA.
The new global matrix equation can be assembled as

Ky ef 1y
K —[Jal | e p =< 1I; 3. (3.18)
K e Il

3.1. Numerical examples

To validate the new joint element formulation for hybrid PFFEM, the model composed of coupled two plates
is applied. The dimension and thickness of each plate shown in Fig. 9 are L, =L, =1m and 4 = 1mm,
respectively, and the material properties of the structure were assumed to be the same as those of steel
(E =19.5 x 10!°Pa, p = 7800kg/m?). The force is located at the center of one plate and its amplitude is
F =100 N. The angle between two plates is 90°. The structural loss factor for two plates was assumed to be 0.1.
Fig. 9 shows the finite element model of a plate structure for numerical applications. The finite element model
shown in Fig. 9 has 200 clements, 231 nodes and 726 degrees-of-freedom. Figs. 10 and 11 show the energy
density level and intensity level distributions of each wave obtained by hybrid PFFEM in f = 1 kHz, respectively.

MODEL SHAPE

0.84

064

z(m)

0.4

[ /S S/

[ S S

[ S
[ /)

0.24

Fig. 9. Finite element model of coupled plates for hybrid PFFEM.
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Fig. 10. Energy density level of hybrid PFFEM when f'= 1 kHz and # = 0.1: (a) flexural energy; and (b) in-plane energy.

Though the CLF of SEA is used in the joint element matrix, the spatial variations of energy density and intensity
within one subsystem appear successfully. Fig. 12 shows the comparison between the analytic power flow
solution using hybrid boundary condition and the numerical power flow solution by hybrid PFFEM in
y = 0.5m. As expected, the numerical results by two methods agree well as shown in Fig. 12. By these results, the
hybrid PFFEM using the new joint element matrix including CLF of SEA was successively validated.
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Fig. 11. Intensity distribution of hybrid PFFEM when f= 1kHz and # = 0.1: (a) flexural energy, and (b) in-plane energy.

To expand the region of application of hybrid PFFEM to built-up structures, an additional example is
presented. Fig. 13 shows the finite element model of an automobile-shaped structure, consisting of 706 nodes,
704 elements and 2616 degrees-of-freedom. The material properties were assumed to be those of steel and the
thickness of all plates is 0.001 m. Figs. 14 and 15 show the numerical results of hybrid PFFEM and classical
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Comparison between analytic hybrid PFA and hybrid PFFEM in y=0.5m
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Fig. 12. Comparison between analytic hybrid PFA and hybrid PFFEM when f'= 1 kHz and = 0.01: (a) flexural energy; and (b) in-plane
energy.

PFFEM, respectively, when f= 200 Hz and n = 0.0001. Additionally, Figs. 16 and 17 show the numerical
results of hybrid PFFEM and classical PFFEM, respectively, when f= 500Hz and # = 0.01. Since the
reverberance factors of subsystems in Figs. 14 and 15 are much smaller than those in Figs. 16 and 17, the
difference between the numerical results of Figs. 14 and 15 is much smaller than that between the numerical
results of Figs. 16 and 17. In Figs. 14 and 15, the numerical results of hybrid PFFEM and classical PFFEM
show a good agreement and their difference is not more than 1dB. To definitely confirm the effect of
reverberance factor in hybrid PFFEM for built-up structure, Fig. 18 shows the relative difference between
hybrid PFFEM and classical PFFEM in the center of the roof subsystem as various reverberance factors of
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Finite element model of an automobile-shaped structure for hybrid PFFEM
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Fig. 13. Finite element model of an automobile-shaped structure for hybrid PFFEM.

the roof subsystem. Like the previous cases, as the reverberance factor of the structure decreases, the
numerical results of two methods become equal. Finally, Fig. 19 shows the spatial intensity distribution that
cannot be represented in classical SEA.

4. Conclusions

For the effective prediction of vibrational and acoustic responses of low-damping structures and acoustic
cavities in the medium-to-high frequency ranges, the general hybrid method using the coupling relationship of
SEA in PFA was derived on 3-D case besides the 1- and 2-D cases which are described in the other companion
paper. Additionally, the hybrid PFFEM using the new joint element matrix including CLF of SEA was
formulated to extend the region of application of hybrid PFA to built-up structures. To verify the developed
methods, numerical analyses of each case were successfully performed. As a result, the hybrid power flow
solutions become equivalent to the classical ones in case of not only 3-D cases but also built-up structures as
the reverberance factors of the system become small.

Therefore, the developed hybrid power flow method can be a useful tool for the prediction of vibrational
and acoustic responses, especially when it uses experimental coupling data for a low-damping system.
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Appendix A

The energy governing equations for 3-D acoustic cavities given in Eq. (2.1) can be expressed as,
2 2 2 2
G (¢, 7

0x2  0y*  0z2

where ¢, ; is the group velocity of an acoustic wave, (e),; is the acoustic energy density and IT;, ; is the acoustic

input power in cavity j. If powers transferred in all the y- and z-directional area boundaries of the cavities in

- (e)aJ + 170‘)<e>a,/' = Hin,j(an/aZ) (] = 1a29 3)5 (Al)
now
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Fig. 14. Energy density levels (dB) of an automobile-shaped structure by hybrid PFFEM when f'= 200 Hz and # = 0.0001: (a) flexural
energy; and (b) in-plane energy.

the model shown in Fig. 2 are zero, the power flow solution of Eq. (A.1) can be obtained as, double series
solution,

o0 o0
(€)0j (X 3.2) = > > {Ejumn(x7) cos(kiy) cos(kz) }
m=0 n=0
(o] [o.¢] A .
= Z Z{(A;fmne_‘/’ "+ A, cos(kimy) cos(k,,z)}, (A2)
m=0 n=0
where k,, = mn/L,, k, = nn/L. and Ajz o = Ko+ Ko+ (nja)/cgJ)z.
The intensity in the jth acoustic cavity can be obtained by, using the energy transfer relation, Eq. (2.3),
00 00 c2 )
(q:)(xj,»,2) = Z Z n%}“-/? mn (A;mne*’v% my A]fmne)'f' ) cos kpy cos knz p, (A3)
m=0 n=0 J
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Fig. 15. Energy density levels (dB) of an automobile-shaped structure by classical PFFEM when f'= 200 Hz and n = 0.0001: (a) flexural
energy; and (b) in-plane energy.

and

o0 00 C2 ) )
(q,)i(x},,2) = g E e (Ajfmne‘)'fm"xf + A}, €7 ) sin ki cos ki z
NQ)
m=0 n=0 J
2

o0 o0
e ) . )
(qz)j(xj,y, z)= Z Z %kﬂ (A;’rmne—mj, i 4 A;mnemj.mm)cos kyy sin k,z 3,

m=0 n=0 17]

where (q,);, (g,); and (q.); are the x-, y- and z-components of intensity (g);, respectively.
The input acoustic point power can be approximated as,

I8(x = x0)0(y — y0)3(z — 20) = D _ Y Myu(X) €08 Kypy €OS kyZ,

m=0 n=0

(A.4)

(A.5)

(A.6)
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Fig. 16. Energy density levels (dB) of an automobile-shaped structure by hybrid PFFEM when f'= 500 Hz and 5 = 0.01: (a) flexural
energy; and (b) in-plane energy.

where I1 is the acoustic input power. I1,,,,, the m- and nth components of IT can be expressed as

I1
L0~ =) (m=0,n=0)
211
HCOS an()é(y — yo) (m = 0, n#O),
Dun={ (A7)
LL cos kyyoo(z —z9) (m#0, n=0),

cos kpyo cos kyzog (m#0, n#0).

L,L.
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Fig. 17. Energy density levels (dB) of an automobile-shaped structure by classical PFFEM when = 500 Hz and n = 0.01: (a) flexural
energy; and (b) in-plane energy.

Two unknowns in each homogeneous acoustic cavity’s domain exist and a total of eight boundary
conditions must be enforced to solve the problem. The intensity of acoustic wave component is zero in the
zero-power boundary, and the continuities of the energy density and intensity of each wave component in the
source point must be enforced. In the area junction of coupled acoustic cavities, Eqs. (2.8) and (2.9) are
applied to the classical power flow solutions and Eq. (2.7) is applied to the hybrid power flow solutions.

Appendix B. Wave transmission analysis of coupled acoustic medium

Fig. Al shows two separated semi-infinite acoustic spaces with different characteristic specific acoustic
impedances, p;c; and p,c,, in the plane where x and y are zero. The incident pressure field in the semi-infinite
acoustic space 1 can be represented as

Prin(X,2,0) = A exp li(wt — ky sin ¢z — ky cos ¢x)], (B.1)
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1° Relative difference of flexural energy density as reverberance factor variation of roof subsystem
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Fig. 18. Relative difference (HE — Eull/ ||EH) between space-averaged flexural energy densities of the roof subsystem, by classical and
hybrid PFFEM as the reverberance factor variation of the roof subsystem.

where A, is the amplitude of the incident pressure in acoustic space 1, ¢; are the incident angle and k; = w/c;.
The pressure field of the reflected wave from the boundary is written by

Prrer(X, 2, 1) = By expli(ot — ki sin ¢z + ki cos ¢x)]. (B.2)
The acoustic pressure field transmitted in the + x-direction can be represented as
P2 tran(X, 2, 1) = A> exp [j(wt — ky sin ¢z — ks cos ¢p,x)]. (B.3)

Since the acoustic waves on both sides of the boundary share the same wave motion along the boundary, the
following equation is confirmed:

ki sin ¢ = ky sin ¢, (B.4)

which is the Snell’s Law. Therefore, when Eq. (B.4) is substituted into Eq. (B.3), the acoustic pressure field in
space 1 can be represented as

P2 tran(%, 2, 1) = Ao exp [j (wl —ky sin ¢z — ky \/(k2 Jka)? — sin2</>1x)], (B.5)

where the incident angle is smaller than critical angle, ¢, = sin~! (k> /k1). When ¢ > ¢, the incident wave is
totally reflected, this results in a transmitted, exponentially decaying wave. Hence, the resulting acoustic
pressure field can be represented as

P2 tran(%, 2, 1) = As exp [j (w — ky sin ¢z — jk \/ sin’p; — (ka /kl)zxﬂ : (B.6)

Because the velocity and pressure matching boundary conditions are enforced, the following relations can
be obtained as, by Euler’s equation, respectively,

D1, in)x:—O +pl, ref)x:—() =D, tran)x=+0 (B7)

-1 opy i 5 —1 [/0ps ¢
: {( pl,m) + ( pl,ref) } = ( p2,lr‘m> ) (Bg)
jop, ox ).__p ox /. g jop, ox )i

and
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Flexural intensity distribution (dB)
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Fig. 19. Intensity level distribution (dB) of an automobile-shaped structure by classical PFFEM when f

(a) flexural energy; and (b) in-plane energy.

By the upper boundary conditions, the amplitudes of the transmitted and reflected pressure fields can be

expressed in terms of those of the incident pressure field, when ¢ < ¢,

2 cos ¢, /(p,c1))

(

[(pyc1) + \/1 —(¢a sin ¢1/01)2/(ch2)>

- (cos o}

2

A
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and

(COS ¢1/(pyc1) — \/1 — (¢c2sin ¢1/6’1)2/(P262)>
A (B.10)

B =
<COS é1/(prc1) + \/1 — (c2sin ¢1/Cl)2/(P2C2)>

The time-averaged acoustic energy density can be represented as the sum of the kinetic and potential energy
densities:

Lo o "
(e)y ==polu-u + . (B.11)
4 (POCO)2
The acoustic intensity can be represented as
1
(), = 3 Re{p*u}. (B.12)

The sound power transmission and reflection coefficients can be expressed as, by considering the refraction
of waves, respectively,

~ 2
‘Az‘ /2.0202 cos ¢, 4plclp2c2\/1 — sin’ ¢1\/1 — ¢y sin ¢y /c1)?

(hy) = —3 Y 5 (B.13)
‘A1‘ /2,0101 : prc2n/ 1 — sin’ ¢, + plcl\/l —(¢cp sin ¢1/c1)2
and
~ 2 2
‘Bl‘ /2p1c1 cos ¢, prcay/1 —sin® ¢, — plcl\/l —(¢y sin ¢, /c1)?
2py) = = 3 (B.14)

~ 12 cos
‘Al‘ /2,0161 ¢1

pycay/1 —sin® ¢, + plcl\/l — (cz sin ¢, /c1)’

A?

V... P P2, €2

Fig. Al. Transmission of obliquely incident sound from medium 1 to medium 2.
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The diffuse sound transmission and reflection coefficients can be expressed as, by considering 3-D space,
respectively [10],

o = f(;r/Z ©(P)sin ¢ cos pdg /2
- fg/zsin ¢ cos pdp

1($)sin 24 do (B.15)

and

f§/2 y(¢)sin ¢ cos ¢ d¢ /2
(0 =" _
Jo'"sin ¢ cos pd¢g

where the sum of the diffuse transmission and reflection coefficients is 1. To evaluate the diffuse power
transmission and reflection coefficients of Eqs. (B.15) and (B.16), the numerical methods are needed.

(@) sin 2¢ d, (B.16)
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